Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://rps.chtei-knteu.cv.ua:8585/jspui/handle/123456789/3275
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorДрінь, Ярослав Михайлович / Drin, Yaroslav-
dc.contributor.authorДрінь, Ірина Ігорівна / Drin, Iryna-
dc.contributor.authorДрінь, Світлана Сергіївна / Drin, Svitlana-
dc.contributor.authorKotsur, Maksym-
dc.date.accessioned2026-01-04T20:09:05Z-
dc.date.available2026-01-04T20:09:05Z-
dc.date.issued2025-
dc.identifier.citationhttps://www.scopus.com/pages/publications/105007991794uk_UK
dc.identifier.issn2663–6824-
dc.identifier.otherУДК 517.9+517.95-
dc.identifier.urihttp://rps.chtei-knteu.cv.ua:8585/jspui/handle/123456789/3275-
dc.descriptionScopusuk_UK
dc.description.abstractIn this paper, we study solvability of the Cauchy problem for a parabolic pseudodifferential equation with the deviation of the argument. Parabolic pseudodifferential operator with non-smooth symbols introduced by Eidel’man and Drin’ for the first time. For such equations, the initial condition is set on a certain interval. Technical and physical reasons for delays can be transport delays, delays in decision-making, delays in information transmission, etc. The most natural are delays when modeling objects in medicine, population dynamics, ecology, etc. Other physical and technical interpretations are also possible, for example, the molecular distribution of thermal energy in various media (liquids, solid bodies, etc.) is modeled by heat conduction equations. Features of the dynamics of vehicles in different environments (water, land, air) can also be taken into account by introducing a delay. The formula for the solution of the Cauchy problem is constructed for the nonlinear equation of heat conduction with a deviation of the argument, its properties are investigated.uk_UK
dc.language.isoenuk_UK
dc.publisherTHE CAUCHY PROBLEM FOR ONE CLASS OF PARABOLIC PSEUDODIFFERENTIAL EQUATION WITH DEVIATION OF THE ARGUMENT / Y. Drin, I. Drin, S. Drin, M. Kotsur // Journal of optimization, differential equations and their applications (jodea). – 2025. – № 33 (1), June 2025. – P. 1–12. – DOI: http://dx.doi.org/10.15421/142510.uk_UK
dc.subjectpseudodifferential nonlinear equationuk_UK
dc.subjectCauchy problemuk_UK
dc.subjectdeviation argumentuk_UK
dc.subjectstep methoduk_UK
dc.titleThe Cauchy Problem for One Class of Parabolic Pseudodifferential Equation with Deviation of the Argumentuk_UK
dc.typeArticleuk_UK
Розташовується у зібраннях:2025

Файли цього матеріалу:
Файл Опис РозмірФормат 
Drin_cauchy_problem.pdfосновний текст724.79 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.