Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://rps.chtei-knteu.cv.ua:8585/jspui/handle/123456789/3055
Название: Modeling of a Cooperative Distance Learning Environment: The Case of Optimal Size of Training Groups
Авторы: Королюк, Юрій Григорович / Koroliuk, Yurii
Ключевые слова: cooperative distance learning
data mining
group size
model of the learning environment
students’ progress
Дата публикации: 2020
Издатель: Koroliuk Y. MODELING OF A COOPERATIVE DISTANCE LEARNING ENVIRONMENT: THE CASE OF OPTIMAL SIZE OF TRAINING GROUPS / Y. Koroliuk // Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, 2020 / eds Z. Hu, S. Petoukhov, I. Dychka, M. He. – 2020. – Vol. 938. – P. 637 – 647. – Springer, Cham. – DOI: https://doi.org/10.1007/978-3-030-16621-2_59 .
Аннотация: There has been made an attempt to build a formalized model of learning environment that would take into account endogenous and exogenous parameters of the e-learning process and foresaw the prognostication of its effectiveness. The conceptual model was formalized on the basis of statistic information about the learning procedure of 15 academic groups. As the formalization methods there have been chosen the method of self-organized Kohonen maps, Artificial Neural Network modeling and Group Method of Data Handling. In the result of clustering with the help of Kohonen maps method there has been found a cluster that encloses academic groups with high performance rate and average number of students – 7. Artificial Neural Network model has proven that performance of students depends greatly on the group size. But, unlike the Kohonen maps, a recommended minimal group size is 10 students. Artificial neural network model and Group Method of Data Handling, though, show a somewhat different result within the scope of the learning course (European Credit Transfer and Accumulation System credits). There has also been discovered that the restriction of the applied methods is the impossibility to estimate the information overload.
URI: http://rps.chtei-knteu.cv.ua:8585/jspui/handle/123456789/3055
Располагается в коллекциях:2020

Файлы этого ресурса:
Файл Описание РазмерФормат 
Koroliuk_Modeling.pdfосновний текст603.66 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.