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Abstract: An interesting electrochemical process for sucralose and chloropicrin electrochemical 

removal has been proposed and theoretically described. The organic halide ion is efficiently removed 

in mildly acidic media by trivalent vanadium oxyhydroxide, being the nitro group of chloropicrin also 

thereby reduced. The analysis of the mathematical model confirms that, despite of high probability of 

the oscillatory behavior, the electrochemical removal of chloropicrin and sucralose is efficient.  

Keywords: sucralose; chloropicrin; electrochemical removal; vanadium (III) oxyhydroxide; 

electrochemical oscillations; stable steady-state. 

© 2023 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Chloropicrin (Figure 1 to the left side) [1 – 4] is a toxic gas used as an antimicrobial 

fungicide, herbicide, insecticide, and nematicide in agriculture. It is generally obtained by 

oxidizing picric acid with hypochlorite in acidic media. Nevertheless, it was also used as a 
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chemical warfare agent by Germans during World War I and by Russian troops during the 

Russian-Ukrainian War (2022) [4], which is why it is necessary to rapidly and efficiently 

remove its remains.  

On the other hand, sucralose (Figure 1 to the right) [5 – 9] is an extremely stable 

artificial sweetener, up to 1000 times as sweet as common sugar. Its effects on human and 

animal organisms have not been completely studied yet. Moreover, being hardly metabolized, 

it is accumulated in the environment. Also, the organisms capable of metabolizing it transform 

the sucralose into toxic chloroorganic derivatives like dioxins and tetrachlorodibenzofurans, 

which is why the sucralose removal from the environment is also actual.  

 
Figure 1. Chloropicrin and sucralose. 

Taking into account the presence of organic chlorine in both compounds, the AOP may 

not be compatible with their removal due to the formation of toxic chlorine gas and chlorine 

oxides. Cathodic dehalogenation is to be used instead. It leads to the chlorine substitution by 

hydrogen, leading to the chloride-ion formation [10 – 12]. Also, to impede the chloride ion 

passage towards the anodic electrolyte, a membrane impeding its permeability is posed to 

divide the cell into the cathodic and anodic electrolytes. Vanadium (III) oxyhydroxide [13 – 

14], acting as a strong reducent in neutral, basic, and mildly acidic media, may be potentially 

an interesting candidate for cathode modification for sucralose and chloropicrin removal.  

Depending on cathode potential and solution pH, the analogous process may also be 

compatible with the electrochemical reduction of other chloroorganic compounds, like 

hexachlorobenzene, pentachlorophenol, DDT, dioxins, etc. This is important for environmental 

remediation, including chemical warfare utilization. The possibility of electroanalytical use of 

this process, in which the chloroorganic compounds are electrochemically quantified, is also 

evaluated.  

In order to evaluate the process of sucralose and chloropicrin vanadium oxyhydroxide-

assisted reduction from the mechanistic point of view, the theoretical description for sucralose 

and chloropicrin cathodic removal is given in this work. The mathematical model has been 

developed and analyzed for this system, and the stability requirements and oscillatory and 

monotonic instability conditions have been established. Also, the behavior of this system has 

been compared to that of similar systems [15 – 21].  

2. System and its modeling 

Sucralose and chloropicrin are reduced cathodically in acidic media, yielding chloride 

ions and correspondent hydrocarbon fragments. As for chloropicrin, its nitro group is also 

reduced, yielding an amino group:  

 

6VOOH + SucrCl3 → SucrH3 + 6VO2 + 3HCl                        (1) 

9VOOH + CCl3NO2→ CCl3NH2 + 6VO2 + 3HCl + 2H2O            (2) 

 

As for vanadium (III) oxyhydroxide, it is regenerated in the electrochemical stage:  
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VO2 + H+ + e- → VO(OH)                                   (3) 

 

Taking this into account, in order to describe the behavior of this system, we introduce 

three variables:  

c – chloropicrin concentration in the pre-surface layer; 

s – sucralose concentration in the pre-surface layer; 

v – vanadium dioxide surface coverage degree.  

Accepting some assumptions [18 – 21], we describe the behavior of the system by 

equation-set (4):  

 

{
 
 

 
 
𝑑𝑐
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2

𝛿
(
𝛥

𝛿
(𝑐0 − 𝑐) − 𝑟2)

𝑑𝑠

𝑑𝑡
=

2

𝛿
(
𝐷

𝛿
(𝑠0 − 𝑠) − 𝑟1)

𝑑𝑣

𝑑𝑡
=

1

𝑉
(𝑟1 + 𝑟2 − 𝑟3)

                                     (4) 

 

Herein 𝛥 and D are diffusion coefficients, 𝑐0 and 𝑠0 are chloropicrin and sucralose bulk 

concentrations, V is vanadium dioxide maximal surface concentrations, and the parameters r 

are the correspondent reaction rates, calculated as (5 – 6):  

 

𝑟1 = 𝑘1𝑠 exp(−𝑎𝑠) (1 − 𝑣)
6  𝑟2 = 𝑘2𝑐 exp(−𝑏𝑐) (1 − 𝑣)

9 𝑟3 = 𝑘3𝑣 exp (−
𝐹𝜑0

𝑅𝑇
)         (5 – 7) 

 

in which the parameters k are the correspondent rate constants, parameters a and b define the 

impact of the chemical stages on DEL ionic force, F is the Faraday number,  𝜑0 stands for zero-

charge-related potential slope, R is the universal gas constant, and T is the absolute 

temperature.  

Taking into account the chloride-ion formation during the electrochemical process, 

changing the DEL ionic force, the oscillatory behavior occurs more probably in this system 

than in similar ones. Nevertheless, the removal process is efficient for converting both 

compounds, as shown below.  

3. Results and Discussion 

In order to investigate the stability of the system with chloropicrin and sucralose 

electrochemical conversive removal, we analyze the equation-set (4) by steady-state stability. 

The steady-state Jacobian matrix members may be described as (8):  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                            (8) 

 

In which:  

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘2 exp(−𝑏𝑐) (1 − 𝑣)

9 + 𝑏𝑘2𝑐 exp(−𝑏𝑐) (1 − 𝑣)
9)         (9) 

𝑎12 = 0                                                         (10) 

𝑎13 =
2

𝛿
(9𝑘2𝑐 exp(−𝑏𝑐) (1 − 𝑣)

8)                           (11) 

𝑎21 = 0                                                         (12) 

𝑎22 =
2

𝛿
(−

𝐷

𝛿
(𝑠0 − 𝑠) − 𝑘1 exp(−𝑎𝑠) (1 − 𝑣)

6 + 𝑎𝑘1𝑠 exp(−𝑎𝑠) (1 − 𝑣)
6)       (13) 
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𝑎23 =
2

𝛿
(6𝑘1𝑠 exp(−𝑎𝑠) (1 − 𝑣)

5)                                         (14) 

𝑎31 =
1

𝑉
(𝑘2 exp(−𝑏𝑐) (1 − 𝑣)

9 − 𝑏𝑘2𝑐 exp(−𝑏𝑐)(1 − 𝑣)
9)               (15) 

𝑎32 =
1

𝑉
(𝑘1 exp(−𝑎𝑠) (1 − 𝑣)

6 − 𝑘1𝑠 exp(−𝑎𝑠) (1 − 𝑣)
6)                (16) 

𝑎33 =
1

𝑉
(−6𝑘1𝑠 exp(−𝑎𝑠) (1 − 𝑣)

5 − 9𝑘2𝑐 exp(−𝑏𝑐) (1 − 𝑣)
8 − 𝑘3 exp (−

𝐹𝜑0

𝑅𝑇
) +

𝑗𝑘3𝑣 exp (−
𝐹𝜑0

𝑅𝑇
))                      (17) 

 

Taking into account the main-diagonal elements (9), (13), and (17), we conclude that 

the oscillatory behavior in this system is possible. Moreover, it becomes more probable than in 

similar systems [18 – 21] due to the cyclic character of DEL ionic force changes during the 

chemical and electrochemical stages.  

Besides the element 𝑗𝑘3𝑣 exp (−
𝐹𝜑0

𝑅𝑇
) > 0 if j>0, describing the positive callback by 

DEL influences of the electrochemical stages, the positive elements responsible for this type 

of callback are 𝑏𝑘2𝑐 exp(−𝑏𝑐) (1 − 𝑣)
9 > 0, if b>0 and 𝑎𝑘1𝑠 exp(−𝑎𝑠) (1 − 𝑣)

6 > 0, if a>0, 

both of them referent to the cyclic DEL ionic force, conductivity, and impedance cyclic changes 

caused by chemical stages. The oscillations amplitude and frequency will be dependent on 

electrolyte composition. Either way, the oscillations are expected to be relatively frequent and 

of small amplitude.  

Applying the Routh-Hurwitz stability criterion to the equation set (1), we analyze the 

steady-state stability requirement. In order to avoid cumbersome expressions, we introduce 

new variables, rewriting thereby the determinant as (18):  

 

4

𝛿2𝑉
|
−𝜅1 − 𝛯 0 𝛬

0 −𝜅2 − 𝛴 𝛲
𝛯 𝛴 −𝛬 − 𝛲 − 𝛺

|                                 (18) 

 

Opening the brackets, applying the Det J<0 requisites, salient from the criterion, and 

changing the signs to the opposite, we describe the stability requirement as (19):  

 

𝜅1(𝜅2𝛬 + 𝜅2𝛲 + 𝜅2𝛺 + 𝛴𝛬 + 𝛴𝛺) + 𝛯(𝜅2𝛬 + 𝜅2𝛲 + 𝛴𝛺) > 0                (19) 

 

Describing an efficient diffusion-controlled process in which the stable steady-state is 

easily formed. The inequation (19) is warranted to be satisfied if the kinetical parameters Ξ, Σ, 

and Ω are positive, which occurs in most cases. Being those parameters positive, the left side 

of the inequation (19) gains more positive values. Taking into account that sucralose and 

chloropicrin do not react with each other and that steady-state stability is easy to obtain and 

maintain, it is possible to conclude that this process may also serve an electroanalytical 

purpose, and the steady-state stability will be thereby correspondent to the linear dependence 

between concentration and current.  

As for the monotonic instability, it delimits the margin for steady-state stability and, for 

electroanalytical effects, the detection limit. Its condition corresponds to the nullity of the 

determinant, or (20):  

 

𝜅1(𝜅2𝛬 + 𝜅2𝛲 + 𝜅2𝛺 + 𝛴𝛬 + 𝛴𝛺) + 𝛯(𝜅2𝛬 + 𝜅2𝛲 + 𝛴𝛺) = 0                    (20) 
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The model will be accomplished if the chloroorganic compounds react with each other 

or with a reagent present in the solution. The equation-set (4) will be thereby rewritten as (21):  

 

{
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=

1

𝑉
(𝑟1 + 𝑟2 − 𝑟3)

                                               (21) 

and its analysis will be analyzed in one of our next works. 

4. Conclusions 

The system analysis with chloropicrin and sucralose cathodic removal let us conclude 

that this process is an efficient diffusion-controlled system capable of converting sucralose and 

chloropicrin into biodegradable compounds economically and green. Furthermore, the easy 

steady-state stabilization may also have an electroanalytical function, providing facile 

analytical signal interpretation. As for the oscillatory behavior, it is more probable than for 

similar systems due to the DEL influences of both chemical and electrochemical processes.  
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