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Abstract: In this work, the possibility of lugduname and perillartin electrochemical determination by 

cathodic process has been given. Both substances are reduced, forming the amino group, which may 

become protonated in an acidic medium, affecting the DEL ionic force and thereby affecting the 

analytical signal interpretation. Although even in the acidic medium, the system is electroanalytical 

efficient, it is recommended to use the neutral or mildly acidic medium for the electroanalytical process. 

This permits us to use the electrochemical sensor to monitor the sweetener concentration in most soft 

beverages. 
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1. Introduction 

Lugduname (Figure 1) is one of the sweetest substances in the world [1]. It is estimated 

to be up to 300 000 (three hundred thousand) times as sweet as ordinary sugar, 37,5 times as 

sweet as neotame, the sweetest sugar substitute currently in widespread use, 300 times as sweet 

as sucralose, and 600 times as sweet as saccharine. It was developed by the Université de Lyon 

(France) in 1996, and its name is derived from the Latin name of the city (Lugdunum). It is a 

part of the family of the guanidine derivatives of acetic acid, which are found to be potent 

sweeteners. It is also used to study taste responses in animals [2].  
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Figure 1. Lugduname. 

It is limitedly used as a sweetener, as its toxicity essays have not been finished yet. 

Moreover, it contains toxic groups, like nitrile [3,4], the toxicity of which is dose-related. 

Therefore, developing a method for lugduname determination is actually [5], and 

electrochemical methods could provide a good service.  

Adding two or more sweeteners to the beverage is frequently used to obtain certain taste 

combinations and/or mimic the real taste of certain beverage components. In this aspect, using 

lugduname and sucralose together in perspective would become widespread in regulating the 

organoleptic properties of beverages and pharmaceutical forms. Nevertheless, the products 

tend to substitute synthetic sweeteners with natural ones, which are more biocompatible and 

maybe even more sweet than some of the most used synthetic sugar substitutes. 

One of them is perillartine (Figure 2) (perillaldehyde anti-aldoxime), a natural 

compound from Japanese perilla (shiso) leaves [6]. It is considered twice as sweet as sucralose, 

four times as sweet as saccharine, and 2000 times as sweet as sucrose (common sugar).  

Not only the proper perillartine but also its ether derivative are used as sweeteners, 

although the ether is much less sweet (being compared in this relation to aspartame).  
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Figure 2. Perillartine and its ether derivative. 

Contrarily to synthetic sweeteners like aspartame, saccharin, and sucralose, perillartine 

is biodegradable and bioaccessible. It is not considered toxic or dangerous for the environment. 

Nevertheless, it may be allergic to people who are allergic to shiso herb [7], which has 

to be taken into consideration for those who tend to use perillartin instead of synthetic 

sweeteners. Also, some toxic nitrogen derivatives like hydroxylamine may form during its 

metabolism in some people. It is important to mention that perillaldehydealdoxyme and its 
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derivatives are rarely used as sweeteners outside Japan, so this statement may be used to 

investigate the falsification of allegedly Japanese products claimed to contain perillartine. 

Thus, developing an efficient, exact, and rapid method for perillartine determination is an 

actual task, and the electroanalytical methods would give it a good service.  

Both compounds possess redox-active functional groups [9–14] and are 

electrochemically active. For this reason, both cathodic and anodic processes may be detected 

in an electrochemical way. In the cathodic process, the analyte will receive protons, and the 

presence of the proton-transfer mediator as an electrode modifier [15–21] is desirable for the 

analytical signal to be easily interpreted.  

Therefore, using vanadium(III) oxyhydroxide as an electrode modifier may facilitate 

the electrochemical detection of both sweeteners in neutral and mildly acidic media, which 

corresponds to most soft drinks.  

Nevertheless, both of the substances are reduced, yielding basic compounds, which 

become ionized in an acidic medium and influence the double electric layer (DEL) 

electrophysical properties. This may affect strongly the behavior of the electroanalytical 

process. For this and other reasons, the a priori theoretical investigation, aimed to analyze the 

behavior of the electroanalytical system with sucralose and lugdunam electrochemical 

determination from the mechanistic point of view, including the comparison to the similar 

processes [15–21], is necessary and this is the goal of the present study.  

2. Materials and Methods 

Both lugduname and perillartine possess easily reducing groups, yielding basic amino 

groups, which remain less ionized in neutral solutions and more ionized in more acidic 

solutions. This begins to affect the DEL ionic force, conductivity, and capacitance, which 

becomes responsible for the instabilities in the acidic medium.  

The mechanism for the electrochemical reduction of both natural and synthetic sugar 

substituents may be described in Figure 3:  
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Figure 3. Perillartine and its ether derivative. 

Taking this into account and considering certain assumptions [17], we describe the 

behavior of this system by a trivariate balance differential equation set as (1):  
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𝑑𝑙

𝑑𝑡
=

2

𝛿
(
𝐿

𝛿
(𝑙0 − 𝑙) − 𝑟𝑙1 − 𝑟𝑙2)

𝑑𝑝

𝑑𝑡
=

2

𝛿
(
𝑃

𝛿
(𝑝0 − 𝑝) − 𝑟𝑝)

𝑑𝑣

𝑑𝑡
=

1

𝑉
(𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑝 − 𝑟𝑟)

                                    (1) 

Herein, 𝛿 is the diffusion layer thickness, l, and p are the pre-surface concentrations of 

each of the sugar substitutes, 𝐿 and 𝑃 stand for the correspondent diffusion coefficients, 𝑙0 and 

𝑝0 stand for their bulk concentrations, v is the VO(OH) surface coverage degree, V stands for 

its maximal surface concentration, and the parameters r correspond to the correspondent 

reaction rates, calculated as:  

𝑟𝑙1 = 𝑘𝑙1𝑙(1 − 𝑣)
4 exp(−𝛼𝑙)                                       (2) 

𝑟𝑙2 = 𝑘𝑙2𝑙(1 − 𝑣)
6 exp(−𝛼𝑙)                                       (3) 

𝑟𝑝 = 𝑘𝑝𝑝(1 − 𝑣)
4 exp(−𝛽𝑝)                                       (4) 

𝑟𝑟 = 𝑘𝑟𝑣 exp (−
𝐹𝜑0

𝑅𝑇
)                                                   (5) 

In which the parameters k are the correspondent reaction rate constants, α, and β are 

parameters describing the impact of the chemical stages on the polymer matrix and DEL 

electrophysical properties correspondently (6, 7): 

𝛼 {
= 0, 𝑖𝑓 𝑝𝐻 = 7
≠ 0, 𝑖𝑓 𝑝𝐻 ≠ 7

                                                       (6) 

𝛽 {
= 0, 𝑖𝑓 𝑝𝐻 ≥ 7
≠ 0, 𝑖𝑓 𝑝𝐻 < 7

                                                       (7) 

F is the Faraday number, 𝜑0 is the zero-charge-related potential slope, R is the absolute 

gas constant, and T is the absolute temperature.  

In this system, both of the analytes affect the DEL during the chemical stage in an acidic 

medium and do not affect it in neutral solutions. For this reason, the acidic medium may lead 

to somehow more unstable behavior. Despite this, this system is an efficient electrochemical 

process in both media, as shown below.  

3. Results and Discussion 

We investigate the electroanalytical process of VO(OH)-assisted lugduname and 

perillartin electrochemical determination, analyzing the equation-set (1) alongside the 

algebraic relations (2 – 7) by means of linear stability theory. The steady-state Jacobian matrix 

members may be calculated as (8):  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                             (8) 

In which:  

𝑎11 =
2

𝛿
(−

𝐿

𝛿
− 𝑘𝑙1(1 − 𝑣)

4 exp(−𝛼𝑙) + 𝛼𝑘𝑙1𝑙(1 − 𝑣)
4 exp(−𝛼𝑙) − 𝑘𝑙2(1 −

𝑣)6 exp(−𝛼𝑙) + 𝛼𝑘𝑙2𝑙(1 − 𝑣)
6 exp(−𝛼𝑙))                  (9) 

𝑎12 = 0                                                              (10) 

𝑎13 =
2

𝛿
(4𝑘𝑙1𝑙(1 − 𝑣)

3 exp(−𝛼𝑙) + 6𝑘𝑙2𝑙(1 − 𝑣)
5 exp(−𝛼𝑙))       (11) 

𝑎21 = 0                                                              (12) 

𝑎22 =
2

𝛿
(−

𝑃

𝛿
− 𝑘𝑝(1 − 𝑣)

4 exp(−𝛽𝑝) + 𝛽𝑘𝑝𝑝(1 − 𝑣)
4 exp(−𝛽𝑝))      (13) 

𝑎23 =
2

𝛿
(4𝑘𝑝𝑝(1 − 𝑣)

3 exp(−𝛽𝑝))                                                          (14) 
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𝑎31 =
1

𝑉
(𝑘𝑙1(1 − 𝑣)

4 exp(−𝛼𝑙) − 𝛼𝑘𝑙1𝑙(1 − 𝑣)
4 exp(−𝛼𝑙) + 𝑘𝑙2(1 −

𝑣)6 exp(−𝛼𝑙) − 𝛼𝑘𝑙2𝑙(1 − 𝑣)
6 exp(−𝛼𝑙))                                                           (15) 

𝑎32 =
1

𝑉
(𝑘𝑝(1− 𝑣)4 exp(−𝛽𝑝)−𝛽𝑘𝑝𝑝(1− 𝑣)

4
exp(−𝛽𝑝))                            (16) 

𝑎33 =
1

𝑉
(−4𝑘𝑙1𝑙(1 − 𝑣)

3 exp(−𝛼𝑙) − 6𝑘𝑙2𝑙(1 − 𝑣)
5 exp(−𝛼𝑙) − 4𝑘𝑝𝑝(1 −

𝑣)3 exp(−𝛽𝑝) − 𝑘𝑟 exp (−
𝐹𝜑0

𝑅𝑇
) + 𝜉𝑘𝑟𝑣 exp (−

𝐹𝜑0

𝑅𝑇
))                                       (17) 

Avoiding the cumbersome expression during the determinant analysis, we introduce 

new variables and rewrite the determinant as (18): 

Det J =
4

𝛿2𝐶
|
−𝜅 − 𝛯 0 −𝛬
0 −𝜑 − 𝛲 −𝛷
−𝛯 −𝛲 −𝛺 − 𝛬 − 𝛷

|                                        (18) 

Considering that:  

−𝐷𝑒𝑡 𝐽 {
> 0, 𝑓𝑜𝑟 𝑠𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= 0 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
                                          (19) 

Opening the brackets, applying the Det J<0 requisite, salient from the criterion, and 

changing the signs to the opposite, we rewrite the condition set as (20): 

𝛺(𝜅𝜑 + 𝜅𝛲 + 𝛯𝜑 + 𝛯𝛲) + 𝛬(𝜅𝜑 + 𝜅𝛲) + 𝛷(𝜅𝜑 + 𝛯𝜑) {
> 0, 𝑐𝑢𝑟𝑣𝑒 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
= 0, 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡

  (20) 

If –Det J>0, the Routh-Hurwitz stability criterion is valid, and the steady-state is thereby 

stable, providing an efficient bisphenols electrochemical determination. Moreover, the wide 

stability region allows us to use this system as an electroanalytical for sensing purposes.  

This criterion is readily satisfied if the kinetic parameters 𝑃, Λ, Φ, and 𝛺 are positive. 

In the vast majority of the cases, they both have positive signs and considering that the other 

variables in the determinant are positive, it indicates the vast steady-state stability topological 

region. The electroanalytical process is both diffusion and kinetically controlled, with the 

prevalence of kinetic factors. Nonetheless, in a neutral medium, in which 𝑃, Λ, and Φ are 

always positive (due to the conditions imposed in (6) and (7)), the diffusion factor will be more 

definitive for the steady-state stability.  

In the absence of the side reactions or other factors capable of compromising the analyte 

and (or) modifier stability, excluding the reactions foreseen by the mechanism, the linearity 

between the electrochemical parameter and concentration is observed, providing an efficient 

analytical signal interpretation, which is important for sweetener concentration monitoring. 

Again, the analytical signal interpretation will become more efficient in a neutral medium.  

The condition Det J=0 corresponds to the detection limit, manifested by the monotonic 

instability. It may be seen as an N-shaped part of the steady-state voltammogram, which depicts 

the margin between the stable steady-states and unstable states and corresponds to the steady-

state multiplicity. In other words, multiple steady-states, each one unstable, coexist at this 

point.  

As for the oscillatory behavior, it is realized beyond the detection limit in the case of 

the Hopf bifurcation realization, and its probability will be different in acidic and neutral 

mediums. Its realization requires the presence of the positive-callback related positive 

addendums in main diagonal elements.  

If we analyze the main diagonal elements (9), (13), and (17), we may observe four 

elements capable of being possible: 

𝛼𝑘𝑙1𝑙(1 − 𝑣)
4 exp(−𝛼𝑙) − 𝑘𝑙2(1 − 𝑣)

6 exp(−𝛼𝑙) > 0, 𝛼𝑘𝑙2𝑙(1 − 𝑣)
6 exp(−𝛼𝑙) > 0 

if 𝛼 > 0, like also 𝛽𝑘𝑝𝑝(1 − 𝑣)
4 exp(−𝛽𝑝) > 0 if 𝛽 > 0, describing the impact of the cyclic 
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changes in DEL caused by ionic forms (trans)formations during the chemical stages, which 

will cause the cycles of increase and decrease in DEL conductivity, manifested by the 

oscillatory behavior, like also the similar impacts of the surface, described by the positivity of 

𝜉𝑘𝑟𝑣 exp (−
𝐹𝜑0

𝑅𝑇
) > 0, if ξ>0.  

Again, in a neutral medium, in which 𝛼 and 𝛽 are nil, only the last factor for the 

oscillatory behavior remains. Therefore, it is possible to conclude that, despite the efficiency 

of the sensor in mildly acidic solutions, the neutral medium is the most favorable for 

quantifying both sweeteners, such as in similar systems [17].  

4. Conclusions 

From the theoretical description of lugduname and perillartin electrochemical cathodic 

determination on trivalent vanadium oxyhydroxide-modified electrode, it has been possible to 

conclude it may be an excellent modifier for the quantification of both of the sweeteners in 

neutral and mildly acidic media. The electroanalytical process is both diffusion and kinetically 

controlled, with the prevalence of the kinetic factor in an acidic medium and diffusion factor 

in a neutral medium. The oscillatory behavior in this system may be caused by both DEL and 

matrix influence by electrochemical and chemical stages. Nevertheless, the chemical stage 

impacts the electrochemical oscillations only in an acidic medium. The system may be 

efficiently used to quantify both sugar substitutes in beverages. 
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