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Abstract: The possibility of ibotenic acid and muscazone electrochemical determination, assisted by a 

conducting polymer electrode, has been developed and evaluated from a theoretical point of view. The 

correspondent mathematical model has been developed and analyzed by means of linear stability theory 

and bifurcation analysis. The model analysis has shown that, due to the transformation of the ionic form, 

the oscillatory behavior in this system tends to be more probable than in similar ones. On the other 

hand, the electroanalytical system will be efficient for both analytes determination and quantification 

in mushroom pulp and biological liquids.  

Keywords: ibotenic acid; muscazone; electrochemical sensors; electrochemical oscillations; stable 

steady-state. 
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1. Introduction 

Amanita muscaria, commonly known as fly agaric, is one of the most widespread 

poisonous mushrooms in moderate and subtropical climatic zones, generally in Europe and 
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North America [1–4]. Some reports confirm the expansion of its habitat towards tropical, 

subequatorial, and equatorial countries, like Colombia [4]. Like most of the Amanita species, 

the fly agaric is highly poisonous, the reason why it is not consumed in food, even cooked and 

roasted. 

The main symptoms of mushroom intoxication are [5–8] euphoria, false happiness, 

vivacity, and hallucinations, followed by sudden depression, anxiety, and slumber. Even in 

small doses, the detoxification is slow and does not pass by the hangover stage. The high doses 

may cause irreversible brain damage and behavior changes. The toxic effects of fly agaric are 

associated with the ibotenic acid and derivatives (Figure 1).  

 
Figure 1. From left to right: ibotenic acid, muscimol and muscazone. 

The ibotenic acid (Figure 1. To the left) is the main amino acid of fly agaric. From the 

chemical point of view, it is a glycine derivative, substituted by an isoxazolic ring, which gives 

it predominantly basic properties. Its toxicity is based on its facility to trespass the 

hematoencephalic barrier, to intervene in the synthesis of brain proteins, modifying, directly or 

indirectly, their composition [9–11]. On the other hand, in some countries, principally in 

Scandinavian countries, including Iceland, it is still used in popular medicine for brain and 

spirit stimulation [12]. Moreover, this acid is used in biochemical tests of neurophysiological 

response[13]. Its decarboxylation converts it into an amine, known as muscimol, an even more 

poisonous compound (Figure 1. In the middle) [14]. 

On the other hand, muscazone (Figure 1. To the right) is one of the ibotenic acid isomers 

produced inside the mushroom by UV-assisted ibotenic acid isomerization. Relating to the 

ibotenic acid or, even more, to its decarboxylate, muscazone is less toxic [5,14–16] but 

possesses a somehow more long-time effect and reinforces the toxicity of two other 

compounds. It provokes memory failure, attention and orientation disorders, and partial vision 

loss.  

Considering the above-cited statements, developing a precise and exact method for 

determining both amino acids is actual, and the electroanalytical methods could provide a good 

solution to this problem [17–24].  

Some electroanalytical and electrophoretic methods have been developed for the 

ibotenic acid [17]. As for the muscazone, no electroanalytical method for detecting this amino 

acid has yet been developed. Considering the presence of highly accepting isoxazolic and 

oxazolonic rings, the cathodical methods in acidic media are preferable, and the conducting 

polymers, widely used in electrochemical sensing as active substances and mediators, are 

widely used in electrochemical sensing could be excellent electrode modifiers for this process 

[19–24]. 

Nevertheless, the synthesis and electroanalytical use of the conducting polymers tends 

to be accompanied by some behavioristic and stability phenomena, like electrochemical 

oscillations or monotonic behavior [25,26], which may put the practical realization of the 
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electroanalytical process in jeopardy. A theoretical mechanistic investigation of this process is 

needed to avoid their realization. Therefore, this work aims to analyze the electroanalytical 

process of CP-assisted ibotenic acid and muscazone electrochemical determination in terms of 

mechanism and stability. It also compares its behavior to similar electroanalytical processes 

[27,28].  

2. Materials and Methods 

The reduction of the ibotenic acid and muscazone is given by different mechanisms. In 

both of the cases, the ring cleavage is realized. As for the ibotenic acid, its reduction is realized 

in two manners. So, schematically, the system's behavior will be realized as in Figure 2.  
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Figure 2. The schematical representation of the electroanalytical process. 

It is important to mention that the muscazone electrochemical reduction in the process 

mimics its metabolism in the human organism. One of the muscazone reduction products is 

methanol, which is responsible for total or partial blindness, one of the fly agaric intoxication 

symptoms.  

Taking into account the above-cited, to investigate the system's behavior, we introduce 

three variables:  

m – the ibotenic acid concentration in the pre-surface layer; 

m* - the muscazone concentration in the pre-surface layer; 

p – the oxidized conducting polymer forms surface coverage degree.  

 

Taking into account some assumptions [27–28], we describe the system's behavior by 

differential equation set (1). 

 

{
 
 

 
 
𝑑𝑚

𝑑𝑡
=

2

𝛿
(
𝛭

𝛿
(𝑚0 −𝑚) − 𝑟𝑖𝑠𝑜 − 𝑟11 − 𝑟12)

𝑑𝑚∗

𝑑𝑡
=

2

𝛿
(
𝛭∗

𝛿
(𝑚 ∗0−𝑚 ∗) + 𝑟𝑖𝑠𝑜 − 𝑟2)

𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟11 + 𝑟12 + 𝑟2 − 𝑟𝑉)

                (1) 
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Herein, M and M* are the aminoacids diffusion coefficients, m0 and m*0 are the bulk 

concentrations of each one of the amino acids, P is the oxidized polymer maximal 

concentrations, and the parameters r are the correspondent reaction rates, calculated as (2–6). 

𝑟𝑖𝑠𝑜 = 𝑘𝑖𝑠𝑜𝑚exp(−𝑎𝑚)                               (2) 

𝑟11 = 𝑘11𝑚(1 − 𝑝)
6 exp(−𝑎𝑚)                       (3) 

𝑟12 = 𝑘12𝑚(1 − 𝑝)
8 exp(−𝑎𝑚)                       (4) 

𝑟2 = 𝑘2𝑚 ∗ (1 − 𝑝)4 exp(−𝑏𝑚)                       (5) 

𝑟𝑣 = 𝑘𝑣𝑝 exp (−
𝑛𝐹𝜑0

𝑅𝑇
)                            (6) 

Herein, the parameters k stand for the correspondent rate constants, a and b are the 

parameters relating the ibotenic acid and muscazone concentrations with the DEL 

electrochemical and electrophysical parameters, n is the number of the electrons transferred by 

the polymer on the electrochemical stage, F is the Faraday number, φ0 is the zero-charge related 

potential slope, R is the universal gas constant, T is the absolute temperature.  

As all of the chemical and electrochemical stages of the process influence the DEL 

electrochemical and electrophysical properties, the behavior of this system tends to be more 

dynamic than in similar systems [27,28]. Nevertheless, the electroanalytical efficacy of the 

process is proven, as shown below. 

3. Results and Discussion 

In order to investigate the behavior of the CP-assisted ibotenic acid and muscazone 

electrochemical determination, we analyze the equation-set (1) alongside the algebraic 

relations (2–6) by means of the linear stability theory. The steady-state Jacobian matrix element 

values may be expressed as (7). 

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                       (7) 

Herein:  

𝑎11 =
2

𝛿
(−

𝛭

𝛿
− 𝑘𝑖𝑠𝑜 exp(−𝑎𝑚) + 𝑎𝑘𝑖𝑠𝑜𝑚exp(−𝑎𝑚) − 𝑘11(1 − 𝑣)

6 exp(−𝑎𝑚) +

𝑎𝑘11𝑚(1 − 𝑣)
6 exp(−𝑎𝑚) − 𝑘12(1 − 𝑣)

8 exp(−𝑎𝑚) + 𝑎𝑘12(1 − 𝑣)
8 exp(−𝑎𝑚))     (8) 

𝑎12 = 0                (9) 

𝑎13 =
2

𝛿
(6𝑘11𝑚(1 − 𝑣)

5 exp(−𝑎𝑚) + 8𝑘12𝑚(1 − 𝑣)
7 exp(−𝑎𝑚))     (10) 

𝑎21 =
2

𝛿
(𝑘𝑖𝑠𝑜 exp(−𝑎𝑚))           (11) 

𝑎22 =
2

𝛿
(−

𝛭∗

𝛿
(𝑚 ∗0−𝑚 ∗) − 𝑘2(1 − 𝑣)

4 exp(−𝑏𝑚) + 𝑏𝑘2𝑚 ∗ (1 − 𝑣)4 exp(−𝑏𝑚))   (12) 

𝑎23 =
2

𝛿
(4𝑘2𝑚 ∗ (1 − 𝑣)3 exp(−𝑏𝑚))      (13) 
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𝑎31 =
1

𝑉
(𝑘11(1 − 𝑣)

6 exp(−𝑎𝑚) − 𝑎𝑘11𝑚(1 − 𝑣)
6 exp(−𝑎𝑚) + 𝑘12(1 − 𝑣)

8 exp(−𝑎𝑚) −

𝑎𝑘12(1 − 𝑣)
8 exp(−𝑎𝑚)) (14) 

𝑎32 =
1

𝑉
(𝑘2(1 − 𝑣)

4 exp(−𝑏𝑚) − 𝑏𝑘2𝑚 ∗ (1 − 𝑣)4 exp(−𝑏𝑚))  (15) 

𝑎33 =
1

𝑉
(−6𝑘11𝑚(1 − 𝑣)

5 exp(−𝑎𝑚) − 8𝑘12𝑚(1 − 𝑣)
7 exp(−𝑎𝑚) − 4𝑘2𝑚 ∗

(1 − 𝑣)3 exp(−𝑏𝑚) − 𝑘𝑣 exp (−
𝑛𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑣𝑣 exp (−

𝑛𝐹𝜑0

𝑅𝑇
)) (16) 

The oscillatory behavior may be possible if the Hopf bifurcation conditions are 

satisfied. The necessary condition for its realization is the presence of the positive elements in 

the Jacobian main diagonal. As is seen by observing the main diagonal elements (8), (12), and 

(16), the oscillatory behavior in this system is possible. Moreover, it is more probable than in 

the simplest cases [27,28], as, in the referenced processes, the number of possibly positive 

elements in the main diagonal is lower.  

In this case, the DEL structure is altered during the electrochemical stage and chemical 

stages, including the isomerization, leading to the ionic form transformation (ibotenate to 

muscazonate). These structural changes also provoke changes in the values in DEL 

capacitances, which may cause oscillatory behavior. 

This behavior is described by the positivity of the elements 𝑎𝑘𝑖𝑠𝑜𝑚exp(−𝑎𝑚) > 0, 

𝑎𝑘11𝑚(1 − 𝑣)
6 exp(−𝑎𝑚) > 0 and 𝑎𝑘12(1 − 𝑣)

8 exp(−𝑎𝑚) > 0 if a>0, 𝑏𝑘2𝑚 ∗ (1 −

𝑣)4 exp(−𝑏𝑚) > 0, if b>0 e 𝑗𝑘𝑣𝑣 exp (−
𝐹𝜑0

𝑅𝑇
) > 0 if j>0. These elements describe the 

influences of the DEL capacitances, leading to the oscillatory changes in its conductivity and, 

therefore, in current. Nevertheless, those instabilities are realized in parameter values beyond 

the detection limit, as shown below.  

To investigate the steady-state stability, we apply the Routh-Hurwitz criterion to the 

equation-set (1) and rewrite the Jacobian determinant as (17) to avoid the cumbersome 

expressions: 

4

𝛿2𝑉
|
−𝜅1 − 𝛯 − 𝛬 0 𝛴

𝛯 −𝜅2 − 𝛸 𝛵
𝛬 𝛸 −𝛴 − 𝛵 − 𝛺

|       (17) 

Opening the brackets and applying the Det J<0 requisites salient from the criterion, we 

obtain the steady-state stability condition, exposed as (18):  

−𝜅1(𝜅2𝛴 + 𝛸𝛴 + 𝜅2𝛵 + 𝜅2𝛺 + 𝛸𝛺) − 𝛯(𝜅2𝛴 + 𝜅2𝛵 + 𝜅2𝛺 + 𝛸𝛺) − 𝛬(𝜅2𝛵 + 𝜅2𝛺 +

𝛸𝛺) + 𝛴𝜅2𝛴 < 0                        (18). 

This condition is written more complex than in [27,28], describing an efficient 

electroanalytical system, either diffusion or kinetically controlled. In [27,28], the models 

describe a less dynamic behavior due to the less expressed analytes' influence on the DEL ionic 

force. In this case, the ionic forms are transformed constantly, providing constant changes in 

DEL electrophysical and electrochemical properties. 

Taking into account that the protons take part directly in the electroanalytical system, 

lowering the pH will stabilize the system, as it augments the possibility of the conducting 

polymer to conduct and mediate the proton transfer from the media and the electron transfer 

from the cathode towards the analytes. Decreasing the pH, the values of the parameters 𝛴 and 
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T will grow, pushing the left side of the in equation (18) to the more negative values and 

stabilizing the system. So the steady-state stability will be electroanalytical efficient, 

corresponding to the linearity of the current – concentration dependence (the model describes 

the sensor function amperometric mode).  

As for the detection limit, its condition is correspondent to the monotonic instability 

and is described as:  

−𝜅1(𝜅2𝛴 + 𝛸𝛴 + 𝜅2𝛵 + 𝜅2𝛺 + 𝛸𝛺) − 𝛯(𝜅2𝛴 + 𝜅2𝛵 + 𝜅2𝛺 + 𝛸𝛺) − 𝛬(𝜅2𝛵 + 𝜅2𝛺 +

𝛸𝛺) + 𝛴𝜅2𝛴 = 0                        (19). 

A similar model may also be used in the case of the use of squaraine dyes as electrode 

modifiers. In this case, the squaraine dye may act either as an active substance or as an electrode 

mediator and stabilizer for metal-derived nanoparticles due to their conducting polymer-like 

conjugated system. It may only be accomplished if both squaraine dye forms on the electrode 

surface are ionic. In this case, one more factor, similar to that observed in [26 – 28], is added, 

making the system even more dynamic (Figure 3). 
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Figure 3. Squaraine-assisted ibotenic acid determination. 

Contrarily to ibotenic acid and muscazone, muscimol (Figure 1). The middle may be 

more efficiently detected electrochemically by an anodic process. In that case, the amino group 

oxidation will give the principal oxidation mechanism. In our next work, various muscimol 

electrochemical determination strategies, including cathodic and anodic processes, will be 

given.  

 

4. Conclusions 

The behavior analysis of CP-assisted ibotenic acid and muscazone cathodic 

electrochemical determination let us conclude that the electroanalytical process is efficient for 

determining both substances. It is either diffusion or kinetically controlled. The reversibility of 

the CP electrode is obtained in the electrochemical stage. As for the oscillatory behavior is 

more probable than in the simplest cases due to the frequent ionic form transformation in DEL.  
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