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Abstract: A novel process for sucralose cathodically electrochemical determination has been 

suggested. In this process, the conducting polymer with pyridinic nitrogen atoms reacts specifically 

with sucralose, yielding a salt. This salt is thereby reduced gradually, yielding a less conducting 

macromolecule. The analysis of the correspondent mathematical model, realized through the linear 

stability theory and bifurcation analysis, shows that the oscillatory behavior is more probable to be 

realized due to charge changes and rearrangements during the electroanalytical process its influence on 

the surface and DEL conductivity. Nevertheless, this process may be efficient for the sucralose 

electrochemical determination.  

Keywords: sucralose; electrochemical sensor; conducting polymer; electrochemical oscillations; 

stable steady-state. 

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

The chemically modified electrodes  (CME) are one of the most modern and flexible 

tools in electroanalytical chemistry [1-4]. They provide a rapid, efficient, accurate and selective 

analyte determination due to their affinity to the analyte.  

On the other hand, sucralose [5, 6] is one of the most-used sugar substitutes in the world. 

It is three times as sweeter as aspartame, twice as sweeter as saccharin, and 800 to 1000 times 

sweeter than sucrose [7, 8].  
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Figure 1. Sucralose. 

It has been approved for use in the USA, in Canada, in Australia, and in the European 

Union [8]. Its chemical composition is related to that of carbohydrates. But, containing three 

chlorine atoms may present toxic effects like mutagenesis, carcinogenesis, provoke obesity, 

and growth of glucose levels [7-12]. Moreover, while stored in an inappropriate way, it may 

form dioxins, which are even more toxic compounds [13, 14].The sucralose decomposition 

during baking may lead to the chloropropanoles formation [15]. So, the development of an 

efficient method for sucralose detection is actual [16-18], and the use of electrochemical 

methods for it would be very interesting. 

The possibility of electrochemical sucralose determination has already been foreseen 

by us theoretically [19, 20] and confirmed experimentally [21]. A direct electrooxidation of 

sucralose was used either in the model or in the experiment. In work [19], sucralose 

immobilization on an acridine derivative capable of forming a quaternary salt has been 

suggested. The sucralose immobilization was foreseen to be followed by the electrochemical 

oxidation of hydroxyl groups of the sucralose units. Another opportunity could be an 

electrochemical reduction of sucralose salt with the correspondent pyridinic nitrogen 

compound, yet realized for paraquat and diquat [22, 23].  

Nonetheless, the novel electrode modifiers' relation to the analytes may include the 

problems of mechanism interpretation, like the need to explain the electrochemical instabilities, 

yet described for the electrooxidation and reduction of organic compounds [24-28]. 

The mentioned problems may only be solved by analyzing a mathematical model 

capable of adequately describing the fluoxetine electrochemical determination. Moreover, it is 

also capable of comparing this system's behavior with similar processes by theoretical means. 

So this work is aimed to describe the sucralose electrochemical determination 

theoretically over a conducting polymer containing pyridinic nitrogen atoms. In order to realize 

it, we suggest the reaction mechanism, developing and analyzing the mathematical model 

based on it. Also, the system’s behavior has to be compared with similar electrochemical 

processes [19-21]. 

2. System and its Modeling  

In the first stage, the sucralose reacts with the polymer, yielding a quaternary salt (Fig. 

2):  
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                                                 Figure 2. Quaternary salt formation  

 

As the cathodic current is applied to the polymer, the conducting polymer is thereby 

reduced. The charge distribution is changed, and the double bond conjugated system is 

modified (Fig. 3):  
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Figure 3. First electrochemical reduction stage 

By this, the deformed conjugated material is non-aromatic and, therefore, can reduce, 

interrupting the bond system (Fig. 4).  
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Figure 4. Second electrochemical reduction stage 

As for the material conductivity increases in the first stage due to the salt formation and 

decreases in the chemical and electrochemical stages.  

Taking into account the mentioned statements, we describe the behavior of this system 

by the trivariate balance differential equation set, formed by the variables:  

s – sucralose concentration in the pre-surface layer;  

p – polymer salt surface coverage degree; 

q – quinonized polymer surface coverage degree. 

Accepting certain assumptions [28], we describe the behavior of this system will be 

described by three balance equations, written as (1):  

{
 
 

 
 
𝑑𝑠

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑠0 − 𝑠) − 𝑟𝑠)

𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟𝑠 − 𝑟𝑟1)

𝑑𝑞

𝑑𝑡
=

1

𝑄
(𝑟𝑟1 − 𝑟𝑟2)

                                                   (1) 

Herein, s0 is the sucralose bulk concentration, P and Q are corresponding polymeric 

forms maximal surface concentrations, and the parameters r are the corresponding reaction 

rates, calculated as:  

𝑟𝑠 = 𝑘𝑠𝑠
2𝑛(1 − 𝑝 − 𝑞) exp(−𝑎𝑠) (2) 

𝑟𝑟1 = 𝑘𝑟1𝑝 exp (−
2𝑛𝐹𝜑0

𝑅𝑇
)      (3) 

𝑟𝑟2 = 𝑘𝑟2𝑞 exp (−
2𝑛𝐹𝜑0

𝑅𝑇
)    (4) 

Herein, the parameters k are the correspondent rate constants, a is the variable 

describing the chemical stage influence to the DEL and surface conductivity, n is the polymer 

chain length, F is the Faraday number, 𝜑0 is the potential slope, related to the zero-charge 

potential, R is the universal gas constant, and T is the absolute temperature.  

As all of the three stages, which compose the process, influence the double electric 

layer, the oscillatory and monotonic instabilities are capable of realizing with more probability. 

Nevertheless, the electroanalytical process will remain efficient, as shown below.  

3. Results and Discussion 

In order to describe the behavior of the electrochemical system with sucralose 

cathodically determination over a conducting polymer with pyridinic nitrogen, we analyze the 

equation-set (1) by means of linear stability theory. The steady-state Jacobian matrix members 

for this system will be described as (5):  
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(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)          (5) 

where:  

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 2𝑛𝑘𝑠𝑠

2𝑛−1(1 − 𝑝 − 𝑞) exp(−𝑎𝑠) + 𝑎𝑘𝑠𝑠
2𝑛(1 − 𝑝 − 𝑞) exp(−𝑎𝑠))           (6) 

𝑎12 =
2

𝛿
(𝑘𝑠𝑠

2𝑛 exp(−𝑎𝑠))         (7) 

𝑎13 =
2

𝛿
(𝑘𝑠𝑠

2𝑛 exp(−𝑎𝑠))         (8) 

𝑎21 =
1

𝑃
(2𝑛𝑘𝑠𝑠

2𝑛−1(1 − 𝑝 − 𝑞) exp(−𝑎𝑠) − 𝑎𝑘𝑠𝑠
2𝑛(1 − 𝑝 − 𝑞) exp(−𝑎𝑠)) (9) 

𝑎22 =
1

𝑃
(−𝑘𝑠𝑠

2𝑛 exp(−𝑎𝑠) − 𝑘𝑟1 exp (−
2𝑛𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑟1𝑝 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
))(10) 

𝑎23 =
1

𝑃
(−𝑘𝑠𝑠

2𝑛 exp(−𝑎𝑠) − 𝑙𝑘𝑟1𝑝 exp (−
2𝑛𝐹𝜑0

𝑅𝑇
))        (11) 

𝑎31 = 0                            (12) 

𝑎32 =
1

𝑄
(𝑘𝑟1 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
) + 𝑗𝑘𝑟1𝑝 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
))    (13) 

𝑎33 =
1

𝑄
(−𝑙𝑘𝑟1𝑝 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
) − 𝑘𝑟2 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
) + 𝑙𝑘𝑟2𝑞 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
)) (14) 

Taking into account the main diagonal elements (6), (10), and (14), we may conclude 

that the oscillatory behavior, in this case, is possible. Moreover, it will be more probable than 

for similar systems due to the somehow more expressive influence of all three reaction stagers 

to double the electric layer and surface conductivity and resistance.  

These elements are 𝑙𝑘𝑟2𝑞 exp (−
2𝑛𝐹𝜑0

𝑅𝑇
) > 0 if l>0, 𝑗𝑘𝑟1𝑝 exp (−

2𝑛𝐹𝜑0

𝑅𝑇
) > 0 if j>0, 

describing the DEL influences of two electrochemical stages, and  𝑎𝑘𝑠𝑠
2𝑛(1 − 𝑝 −

𝑞) exp(−𝑎𝑠) > 0 if a>0, describing the analogous influences of the chemical stage.  

The oscillations' frequency and amplitude are dependent on the background electrolyte 

composition, directly related to DEL structure and conductivity. Nevertheless, the proper 

oscillations are expected to be frequent and of small amplitude.  

In order to apply the Routh-Hurwitz criterion without cumbersome expressions, we 

rewrite the matrix determinant as (15):  

2

𝛿𝑁1𝑁2
|
−𝜅 − 𝛯 𝛴 𝛴
𝛯 −𝛤 − 𝛴 −𝛵 − 𝛴
0 −𝛷 − 𝛤 −𝛺 − 𝛵 − 𝛴

|  (15) 

Opening the brackets and applying the requisite Det J<0, salient from the criterion, we 

obtain the steady-state stability condition, exposed as:  

−𝜅(𝛤𝛺 + 𝛴𝛺 + 𝛴𝛵 + 𝛴2 −𝛷𝛵 − 𝛷𝛴) − 𝛯(𝛤𝛺 + 𝛴𝛺 + 𝛴𝛵 − 𝛷𝛵 + 𝛷𝛴) < 0           (16) 

This describes an electroanalytical efficient process, which is either diffusion or 

kinetically controlled. The transition to diffusion- or kinetically controlled mode is realized by 

changing the electrolyte composition, analyte concentration, and electrode shape.  

The steady-state stability topological zone has to be narrower than in the more simple 

cases described in [19-21]. Nevertheless, it remains relatively wide, providing a wide 

concentration interval of sensitive sucralose determination. As no side reactions capable of 

compromising the analyte or modifier stability are typical for this case, the steady-state stability 

will correspond to the linear dependence between the analyte concentration and 

electrochemical parameter.   

https://doi.org/10.33263/BRIAC122.14991506
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC122.14991506  

https://biointerfaceresearch.com/ 1503 

As for the detection limit, it will be described by the monotonic instability. It delimits 

the stable steady-states from unstable states, and its condition will be Det J=0, or (17):  

−𝜅(𝛤𝛺 + 𝛴𝛺 + 𝛴𝛵 + 𝛴2 −𝛷𝛵 − 𝛷𝛴) − 𝛯(𝛤𝛺 + 𝛴𝛺 + 𝛴𝛵 − 𝛷𝛵 + 𝛷𝛴) = 0           (17) 

Also, if the reaction is realized in acidic media, sucralose fragment tends to 

dehalogenize, yielding a chloride ion. By this, the model will be transformed into (18):  

{
 
 

 
 
𝑑𝑠

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑠0 − 𝑠) − 𝑟𝑠)

𝑑𝑝

𝑑𝑡
=

1

𝑃
(𝑟𝑠 − 𝑟𝑟1)

𝑑𝑞

𝑑𝑡
=

1

𝑄
(𝑟𝑟1 − 𝑟𝑟2 − 𝑟𝑑)

                               (18), 

where  𝑟𝑑 is the dehalogenation rate, described as: 

𝑟𝑑 = 𝑘𝑑𝑞 exp (−
4𝑛𝐹𝜑0

𝑅𝑇
)     (19) 

As a chloride ion is formed during the dehalogenation, the membrane, impeding the 

chlorine evolution (20) 

2Cl- - 2e-
→ Cl2 (20) 

will be installed in order to separate the cathodic and anodic solutions. By this, the 

dehalogenation cell will be designed as in Figure 5:  

 
Figure 5. Sucralose dehalogenation cell. 

The process will be thereby similar to [28]. The membrane is made of polyvinyl 

pyridines (PVP), which retain the chloride-ion by salt formation (Fig. 6):  
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Figure 6. Chlorine retention by PVP membrane 
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As for the membrane regeneration, it is realized as on the Figure 7:  
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Figure 7. Membrane regeneration 

By maintenance of the sucralose elimination process, membrane confection, and 

regeneration rhythms, an economical and green sucralose elimination process is conducted. 

4. Conclusions 

From the theoretical description of sucralose electrochemical determination over a 

conducting polymer containing the pyridinic nitrogen, it has been possible to conclude that the 

mechanism consists of the chemical and two gradual electrochemical stages, leading to the 

appearance of a determined analytical signal. The polymer may serve as an excellent modifier 

for sucralose quantification. The stable steady-state is maintained easily. The system is 

electroanalytical efficient. Depending on the electrolyte composition, electrode size, and the 

analyte concentration, the process may be diffusion- or kinetically controlled. The oscillatory 

behavior in this system is possible, being caused only by DEL influences of both 

electrochemical processes, like also of the chemical stage. 
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